
AIBridge
Lecture 1

AIBridge

■ Bridge the gap between AI and [your choice]

■ First camp at UC Davis in June 2022, 2nd in Silicon Valley in March 2023

■ Acquire basics: Python, basic ML algorithms, toolbox usage

■ Enable further learning

■ Enable easier communications and collaborations

■ AIFS - NSF/USDA AI Institute for Next Generation Food Systems

AI in Food Systems

■ Molecular breeding

➢ Help breeders to run more efficient and targeted breeding programs

■ Agricultural production

➢ Crop yield sensing and forecasting

➢ Water and nitrogen stress sensing, prediction, accusation

■ Food processing

➢ Tomato processing loss prediction

➢ Sanitation classification

■ Nutrition

➢ Use food photo and text to predict core ingredients

➢ Dietary recommendation

WHAT IS AI/ML?

4

AI vs. ML

https://azure.microsoft.com/en-us/overview/artificial-intelligence-ai-vs-machine-learning/#introduction

What can AI do

Machine Learning
■ Arthur Samuel (1959). Machine Learning: Field of study

that gives computers the ability to learn without being
explicitly programmed.

■ Tom Mitchell (1998) Well-posed Learning Problem: A
computer program is said to learn from experience E with
respect to some task T and some performance measure P, if
its performance on T, as measured by P, improves with
experience E.

6

A High-Level View

7

Deep Learning

8

9

Our focus

Class Structure

■ Lecture + break + lab

➢ Lab is the best part of this bootcamp

■ Recap

➢ Overview of key knowledge points

➢ Feedback from you (pace, clarity, etc.)

■ Learning by doing

➢ Iris dataset

➢ Wine dataset

■ Go through the process to complete a basic ML project

Schedule

■ Python: 1.5 days

➢ Condensed with a focus on what we need for ML

■ ML: 3 days

➢ More intuitions

■ Friday afternoon: Shark Tank

Schedule

Typical Practices in ML/Programming

■ Find a sample

■ Read through it

■ Try it

■ Modify it

■ Google it

■ Basic skills to do these and practice them

Best Practices

■ Ask questions

■ Type along during lectures

■ Ask for help

■ Make good use of labs

■ Provide feedback

Learning by Doing

■ Iris

■ Wine

■ Your own on Day 5 PM

Resources

■ Class notes, links in notes

■ Python: https://www.w3schools.com/python/

■ Sklearn user guide: https://scikit-learn.org/stable/user_guide.html

■ Google

■ ChatGPT*

https://www.w3schools.com/python/
https://scikit-learn.org/stable/user_guide.html

INTRODUCTION TO PYTHON

Python

■ Python is a popular programing language

■ Guido van Rossum, Dutch programmer, invented in late 1980s

■ Widely used in industry and academia, especially for ML applications.

■ R vs Python

➢ Python better at large data amounts and machine learning

https://www.coursera.org/articles/what-is-python-used-for-a-beginners-guide-to-using-python
https://www.interviewbit.com/blog/python-vs-r/#:~:text=Python%20Vs%20R%3A%20Full%20Comparison,-Difference%20Between%20Python&text=R%20is%20a%20statistical%20language,for%20data%20experiment%20and%20exploration.

Lecture Outline

●

● General Python Syntax

● Variables

● Logic

● Control Flows

20

Google Colab

Google Colab Setup

● https://colab.research.google.com/

● Stores everything on Google Drive

● Can be shared with others and across devices

● No setup required

● Most packages/libraries preinstalled

Follow along as we work through the Python language

21

Google Colab

https://colab.research.google.com/

Google Colab UI

22

Google Colab

Write code inside “cells”
Run a cell by clicking this button

Add new cells by clicking “+ Code”
Delete cells by
clicking this button

Lecture Outline
● Google Colab

●

● Variables

● Logic

● Control Flows

23

General Python Syntax

Getting Started

● Comments allow sections of the code to be more readable

○ Anything after a “#” is a comment
○ # I am a comment!

● Functions take in inputs and give outputs

○ print(input)

○ The print function prints out the input

○ print("hello world")

24

General Python Syntax

Lecture Outline

● Google Colab

● General Python Syntax

●

● Logic

● Control Flows

25

Variables

Overview

● A variable is a reserved place in memory (think: container) which can store a value

● Creating variables: variable_name = value

● Can be used anywhere after its assignment, but never before

● Can re-assign values as needed

● 7 types of values: Integer, Floating-point, String, Boolean, List, Tuple, and Dictionary

● (More details about each type coming up in next slides)

26

Variables

var_a = 25

var_a = 70

print(var_a)

Names

● Cannot start with a number

● Cannot include spaces

● Cannot be a keyword: https://www.w3schools.com/python/python_ref_keywords.asp

● Should be descriptive

● *Good practice: all lowercase with underscores for spacing

Good examples: datapoint_number, petal_width, ...

27

Variables

"3rd_variable"
"my variable"

https://www.w3schools.com/python/python_ref_keywords.asp

Self-Test

A. 70 ⇒ because the value of variable_b is set
to be 70 in the second line

B. 40 ⇒ because the value of variable_b is set
to be the same as variable_a which is 40

C. 25 ⇒ because the value of variable_b is set
to be the same as variable_a which is 25

Variables

What does the following code output?

variable_a = 25

varaible_b = 70

variable_a = 40

variable_b = variable_a

print(variable_b)

What does the following code output?
A. 70 ⇒ because the value of variable_b is set

to be 70 in the second line

B. 40 ⇒ because the value of variable_b is set
to be the same as variable_a which is 40

C. 25 ⇒ because the value of variable_b is set
to be the same as variable_a which is 25

variable_a = 25

varaible_b = 70

variable_a = 40

variable_b = variable_a

print(variable_b)

Variables

Self-Test

Integer

● Non-fractional number

● Positive or negative

● No maximum or minimum practically

first_number = 1

second_number = 5

third_number = -3

30

Variables

Floating-Point

● “Float”

● Decimal point number

● Accurate within 2-55

petal_length = 3.5

petal_width = 4.0

pi = 3.14159265358

31

Variables

3.1415926

Floating (Decimal) Point

String

● A string of characters

● Put in quotations " " or ' '

● *Block string (multi-line string): three quotation marks

● *Special character (new line): "\n"

first_string = "s"

second_string = "string 2"

second_string = "another string"
32

Variables

Not this

Boolean

● True or False (capitalize)

first_boolean = True

second_boolean = False

33

Variables

List

● A list of values

○ my_list = [value_1, value_2, ...]

○ example_list = [5, 20, 11, 3, 10]

○ Can include multiple different data types

○ multi_type_list = ["hello world", True, 5]

34

 [a, b, c, d, e]
 0 1 2 3 4

Variables

● For a specific value in the list: my_list[index]

○ The index of the 1st item is 0,

○ a_value = my_second_list[2] # gets the THIRD value in the list

○ *There is also negative indexing (index of -1 gets last element, -2 gets second from last, etc.)

Self-Test

What does the following code output?

A. 22 ⇒ because value is set to the
second item in the list

B. 23 ⇒ because value is set to the
third item in the list

my_list = [21, 22, 23, 24, 25]

value = my_list[2]

print(value)

Variables

A. 22 ⇒ because value is set to the
second item in the list

B. 23 ⇒ because value is set to the
third item in the list

Variables

Self-Test

What does the following code output?

my_list = [21, 22, 23, 24, 25]

value = my_list[2]

print(value)

* Tuple

● Works the same as a list, but can’t be changed

● Can contain multiple different data types

my_first_tuple = (object_1, object_2, ...)

my_second_tuple = (22, "hello!", True, 3.1415)

a_value = my_second_tuple[2] # gets the THIRD value in the tuple

37

Variables

* Dictionary

● A list of values with custom keys that are indices, like a list but indices are keys and not positions

my_dictionary={'apple':'fruit', 'banana':'fruit', 'cabbage':'vegetable',

'dragonfruit':'fruit','eggplant':'vegetable'}

print(my_dictionary['cabbage'])

38

Variables

Type Conversion

● Types: int, float, str, bool, list, tuple

● Convert types of variables to other types

my_float = float(my_string) #gives string in float form if possible

● Compatible types:
○ int → float
○ float → int (always rounds down)
○ str → int
○ str → float
○ *[most types] → string
○ *list → tuple
○ *boolean → int/float (0 → False, anything else → True)
○ *str → list/tuple (only converts str to list/tuple of single characters)

39

Variables

Basic Arithmetic Operations

+ - * ** / // %

Addition Subtraction Multiplication Exponentiation
Division

(turns int to
float)

Floor Division
(rounds down
the quotient)

Modulus
(returns the
remainder)

x + y
1 + 2 == 3

x - y
2 – 1 == 1

x * y
2 * 3 == 6

x ** y
2 ** 3 == 8

x / y
8 / 2 == 4.0

x // y
9 // 4 == 2

x % y
10 % 4 == 2

Variables

Note: the double equal sign a == b is used to
check for equality instead of assigning variables

Basic Arithmetic Operations

Variables

x = 4

x = x + 1

x becomes 5

Changing a variable’s value:

x = 4

x = x - 2

x becomes 2

x = 4

x = x * 2

x becomes 8

Lecture Outline

● Google Colab

● General Python Syntax

● Variables

●

● Control Flows

42

Logic

Conditionals

if statement_1:

 Code segment 1

elif statement_2: # elif means else if

 Code segment 2

else:

 Code segment 3

43

Logic

Example code

x = 1

y = 1

if x == y:

 print('x is equal to y')

elif x > y:

 print('x is greater than y')

else:

 print('x is less than y')

Logic

Example code

x = 4

y = 1

if x == y:

 print('x is equal to y')

elif x > y:

 print('x is greater than y')

else:

 print('x is less than y')

Logic

Example code

x = 4

y = 10

if x == y:

 print('x is equal to y')

elif x > y:

 print('x is greater than y')

else:

 print('x is less than y')

Logic

Logic Operations

== != < > <= >=

== True if the two sides are exactly the same (1 == 1 is True)

!= True if the two sides are NOT the same (2 != 1 is True)

47

Logic

● and: only runs if both are True

if 1 == 1 and 1 == 2:

code segment…
● or: runs if at least one of them are True

if 1 == 1 or 1 == 2:

 code segment…

48

Logic

Logic Operations

x = 4

y = 4

if x < y or x == y:

 print("x is less than or equal to y")

Self-Test

Which of these conditions
are successfully passed?

petal_width = 1.8

petal_length = 3.5

if petal_width < 3 or petal_length < 3:

 print("condition 1 passed")

if petal_width < 3 and petal_length < 3:

 print("condition 2 passed")

if petal_width < 3:

 if petal_length < 3:

 print("condition 3 passed")

Logic

petal_width = 1.8

petal_length = 3.5

if petal_width < 3 or petal_length < 3:

 print("condition 1 passed")

if petal_width < 3 and petal_length < 3:

 print("condition 2 passed")

if petal_width < 3:

 if petal_length < 3:

 print("condition 3 passed")

Logic

Self-Test

Which of these conditions
are successfully passed?

Lecture Outline

● Google Colab

● General Python Syntax

● Variables

● Logic

●

51

Control Flows

Hypothetical Scenario

We have this very large list of 11 words:

How do we access and print out every word?

52

word_list = ["Lorem", "ipsum", "dolor", "sit", "amet", "fusce",
"rhoncus", "mi", "viverra", "velit", "mattis"]

Control Flows

print(word_list[0])
print(word_list[1])

print(word_list[2])

print(word_list[3])

print(word_list[4])

print(word_list[5])

print(word_list[6])

print(word_list[7])

print(word_list[8])

print(word_list[9])

print(word_list[10])

53

Horribly inefficient

A lot of tedious manual coding

Completely unscalable (what if there were 70 words)

word_list = ["Lorem", "ipsum", "dolor", "sit", "amet", "fusce", "rhoncus", "mi",
"viverra", "velit", "mattis"]

Control Flows

Hypothetical Scenario

Only difference

between all these

lines is the index

54

print(word_list[0])
print(word_list[1])

print(word_list[2])

print(word_list[3])

print(word_list[4])

print(word_list[5])

print(word_list[6])

print(word_list[7])

print(word_list[8])

print(word_list[9])

print(word_list[10])

Control Flows

Hypothetical Scenario

For Loops

● How to use: for iterator in iterable:
○ String, list, range, etc.

○ Need indentation

55

for number in range(0, 11): #range goes through 0, 1, 2, … 10

 #this loop repeats 11 times and number changes to each number

 print(word_list[number])

word_list = ["Lorem", "ipsum", "dolor", "sit", "amet", "fusce",
"rhoncus", "mi", "viverra", "velit", "mattis"]

Control Flows

for word in word_list:
 #this loop does the exact same thing but with less typing

 print(word)

56

for number in range(0, 11): #range goes through 0, 1, 2, … 10

 #this loop repeats 11 times and number changes to each number

 print(word_list[number])

word_list = ["Lorem", "ipsum", "dolor", "sit", "amet", "fusce",
"rhoncus", "mi", "viverra", "velit", "mattis"]

Control Flows

For Loops

word_list = ["Lorem", "ipsum", "dolor", "sit", "amet",
"fusce", "rhoncus", "mi", "viverra", "velit", "mattis"]

57

Output:

for word in word_list:
 #this loop does the exact same thing but with less typing

 print(word)

Control Flows

For Loops

Self-Test

a.

for word in big_list:

 print(word)

b.

for i in range(9):

 print(big_list[i])

c.

for word in big_list:

 print(big_list[word])

Which of the following code blocks will print out everything in the list?

big_list = ["Lorem", "Ipsum", "Dolor", "Sit", "Amet",

"Consectetur", "Adipiscing", "Elit", "Sed"]

Control Flows

Which of the following code blocks will print out everything in the list?

big_list = ["Lorem", "Ipsum", "Dolor", "Sit", "Amet",

"Consectetur", "Adipiscing", "Elit", "Sed"]

a.

for word in big_list:

 print(word)

b.

for i in range(9):

 print(big_list[i])

c.

for word in big_list:

 print(big_list[word])

Control Flows

Self-Test

While

● How to use: while statement:

○ The loop repeats as statement is true

○ Needs indentation

my_number = 0

while my_number < 6:

 print(my_number)

 my_number = my_number + 1

60

Control Flows

Indentation

a_list = [3, 22, 1, 73, 40, 3, 19]

sum = 0

for i in range(0, 7):

 sum = sum + a_list[i]

 sum = sum / 2.4

 sum = sum * -1

 print(a_list[i])

print(sum)

61

Inside loop

because of

indentation

(tab)

Control Flows

Don’t worry about
what this code does.

